'Copyright 2000 The American Cryptogram Association (ACA)

'3613 Piedmont Drive, Plano TX 75075-6234

'All rights reserved.

Intelligent Brute Force program to solve addition Cryptarithms.

STUBTOES 05825430 21 18 15 12 9 6 3 0

FOURDOOR SRBEOTDAUF 94816441 22 19 16 13 10 7 4 1

DUOAORBB 0123456789 68474122 23 20 17 14 11 8 5 2

 fig 1 fig 2 fig 3 fig 4

The cryptarithm in fig 1 is going to be solved column by column, starting from the rightmost column and moving left. To do this a pointer called ‘ptr’ will move along a route shown in fig 4; ptr will start at position zero and move in numerical order through all the positions to position 23.

The computer allocates indices to each letter, following this route. Consequently indices are allocated as shown in fig 2. Values generated for the letters are called a[0] for ‘S’, a[1] for ‘R’,....a[9] for ‘F’.

Then a block called index[][] is made replacing letters with the indices (fig 3) and the contents of the block are put into an array tape[], following the route described above:

tape[],following same route: = 0,1,2,3,4,2,4,4,1,5,6,4,2,1,7,...

tape[] will be used during solving to find the index at any position of ptr.

As my article explains, not all the letters need to be incremented. The computer must determine which locations to increment and which to ignore. This is now evaluated. The rule is: a letter whose index appears in tape[] for the first time will be incremented as long as it is not in the bottom row (where addition takes place). The computer, knowing how many addends exist, now finds the appropriate indices and puts them into array bonk[], and at the same time the position in tape[] is put into array bonk_pos[]. For this cryptarithm:

bonk[]=0,1,3,4,5,6,8,9; bonk_pos[]=0,1,3,4,9,10,15,22.

The computer has now prepared all the instructions it needs. It initialises all a[] values to –1 and the pointer to the position before start, ptr=-1.

The computer will solve the cryptarithm in a number of steps, each time incrementing the pointer to another location. So it starts by incrementing the pointer from –1 to zero. Now it must decide whether to increment the a[] value with the index of tape[ptr], whether to add the two preceding values or whether to do nothing because the a[] value has already been generated. The computer determines whether the pointer is indicating a location in the bottom line: if so it must add and the value of a variable ‘action’ is set to ‘a’. Otherwise it checks whether the location pointed to is in array bonk_pos[]: if so action is set to ‘i’ to indicate incrementing must be done.

The program now initiates appropriate action – either add or increment – to complete the cycle. It then commences a new cycle by incrementing the pointer to the next location

The ‘i’ procedure. The present value of the current index is copied into ‘x’ by the command: x=a[tape[ptr]].

x is then incremented until it reaches a value which is different to any other a[] that precedes it. So for example if the ptr=9, then from tape[] the index of the letter is 5, so x is made equal to a[5] and is incremented. Then x is compared with a[0] to a[4] and if it is the same as any of these values, then x will continue to be incremented until it becomes unique.

If in this process ‘x’ should become equal to base (ie 10 for this example) it is reset to –1, and the computer backs up to the location of the last incrementation. This location is the location before 9 in array bonk_pos[], which is 4. The pointer is reset to 4. The index at location 4 is tape[4] which also happens to be 4. Now the computer repeats the incrementing routine, putting x=a[4], and backing-up again if x becomes equal to base. This procedure continues until a value of ‘x’ is eventually found that is unique -- the incrementing procedure is complete.

The ‘a’ procedure. The computer first adds up the two preceding a[] values, whose indices are found as the two preceding values in tape[], together with any carry[] from the previous column. If the sum is 10 or more, then it notes a digit value of (sum-10) and a carry forward of 1 for the addition. (If there are three addends then of course the three preceding values are added together).

Now come two crucial checks. The digit must not be the same as any other previous value of a[] unless that previous a[] has the same index as the present location – in other words the same value must have the same letter.

Moreover, if the index of the present location is the same as the index of an a[] evaluated before the current location, then digit must have the same value as that a[] – in other words the same letter must have the same value.

If these checks are passed then the value of digit is put into a[] with the present index – ie into a[tape[ptr]] -- and the value of ‘y’ is put into carry[] indexed to the present column. If one of the two checks fails, the last incrementation must be repeated, so the computer must go back to the last location of incrementation by resetting the pointer to that location as explained above – and then backing up one further position ready for incrementing in the next cycle.

The add procedure is now completed.

When the pointer reaches the final location and completes a satisfactory add there, a solution has been found. This is displayed.

The program then looks for more solutions by going back to the value last incremented , and incrementing again.

Eventually a[0] will reach a value equal to the base, indicating that all possible perms have been tried. The computer then stops and declares it has finished.

For those who would like to see how a program might implement the above plan I append my C++ program -- with no claims for its erudition.

C++ program.

 #include <iostream>

 #include <conio.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <fstream.h>

 #include <string.h>

 char key[50],w[30][30],letters[50],block[10][20],action;

 int j,k,m,nr,p,r,t,x,y;

 int carry[50],value[50],base,noi,ptr,flag,bad,sum,noa;

 int len,now,len_w[30];

 int ni,nos,target,repeat;

 int a[30] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1};

 int noc,nor,row,col,good;

 int index[20][30];

 int bonk[50],bonk_nr,len_bonk;

 int bonk_pos[50],tape[50];

 int digit,bonk_index,a_index,c[20];

 void initialise(void);

 void display(void);

 main()

 {

 strcpy(w[0],"STUBTOES");

 strcpy(w[1],"FOURDOOR");

 strcpy(w[2],"DUOAORBB");

 base=10;

 initialise(); //measure parameters and set up instructions

 do{

 do

 {

 ptr++;

 action=' ';

 if((ptr+1)%now==0) {action='a'; col=(ptr+1)/now; } // bottom line so add

 else // not bottom line so increment if pointer is in bonk_pos[]

 {

 good=0;

 for(m=0;m<len_bonk;m++) if(ptr==bonk_pos[m]) {good=1;break;}

 if(good==1) action='i';

 }

 switch(action)

 {

 case 'i':

 {

 do{

 a_index=tape[ptr];

 x=a[tape[ptr]];

 //..increment x and repeat as long as x is not unique..

 do{

 x++;

 flag=0;

 for(m=0;m<a_index;m++) if(a[m]==x) {flag=1;break;}

 }while(flag>0);

 //..if x too large put a[]=-1 and repeat to increment last incremented..

 if(x>base-1)

 {

 repeat=1;

 a[tape[ptr]]=-1;

 ptr=bonk_pos[bonk_index-1]; // ptr goes back to last incremented

 site

 bonk_index=bonk_index-1; // bonk_index goes back to same place

 }

 else {repeat=0; a[tape[ptr]]=x;}

 }while(repeat>0);

 break;

 }

 case 'a':

 {

 sum=0;

 for(m=1;m<noa+1;m++)

 sum=sum+a[tape[ptr-m]];

 sum=sum+carry[col-1];

 digit=sum%base; y=sum/base; // y is carry

 bad=0;

 // bad if digit same as value a[] but index a[] is different to present site

 for(m=0;m<ptr;m++)

 if(digit==a[tape[m]] && tape[m]!=tape[ptr] && tape[m]!=20) {bad=1;break;}

 //bad if indices of a[] & present site are same but value a[] different to digit

 if(bad==0)

 {

 target = tape[ptr];

 for(m=0;m<ptr;m++)

 if(tape[m]==target && digit != a[tape[m]]) bad=1;

 }

 if(bad==1)

 {

 //..find position of last incrementing..

 flag=0;

 for(m=ptr-1;m>-1;m--)

 {

 for(p=0;p<len_bonk;p++)

 if(m==bonk_pos[p]) {bonk_index=p;flag=1;break;}

 if(flag==1) break;

 }

 ptr=bonk_pos[bonk_index];

 ptr--;

 }

 else // all is well, addition is successful

 {

 a[tape[ptr]]=digit;

 carry[col]=y;

 }

 }

 } // end switch

 if(a[0]<0) break; // have tried all possible perms so finish

 } while(ptr<noc*now);

 if(a[0]>-1) // a solution has been found so display results

 {

 nr++;

 cout<<"Solution #"<<nr<<endl<<" ";;

 for(m=0;m<base;m++) cout<<letters[m]<<" ";cout<<endl;

 for(m=0;m<base;m++) if(a[m]<10) cout<<" "<<a[m]<<" ";

 else cout<<a[m]<<" ";

 cout<<endl;

 cout<<"Letters arranged 0 to "<<base-1<<" = ";

 for(p=0;p<base;p++)

 for(m=0;m<base;m++)

 if(a[m]==p) cout<<letters[m];

 cout<<endl;

 cout<<"Nr of steps = "<<nos<<endl;

 cout<<endl;

 }

 }while(a[0]>0);

 cout<<endl<<"end";

 getch();

 return 0;

 }

//-----------------------------end of main procedure----------------------------

 void initialise(void)

 {

 int delta;

 a[20]=0;

 for(j=0;j<10;j++) if(strlen(w[j])==0) break;

 now=j; noa=j-1; //Nr of words and Nr of addends

 for(j=0;j<now;j++) len_w[j]=strlen(w[j]);

 noc=len_w[now-1]; nor=now; //Nr of columns and Nr of rows

 //...make block of letters....

 for(row=0;row<now;row++)

 {

 delta=noc-len_w[row];

 if(delta>0)

 for(j=0;j<delta;j++) block[row][j]=' ';

 for(j=0;j<len_w[row];j++) block[row][delta+j]=w[row][j];

 }

 //..make block of index numbers and make array letters[]....

 t=-1;

 for(col=noc-1;col>-1;col--)

 {

 for(row=0;row<nor;row++)

 {

 if(block[row][col]==' ') {index[row][col]=20;continue;}

 flag=0;

 for(m=0;m<strlen(letters);m++)

 if(block[row][col]==letters[m])

 {x=m;flag=1;break;}

 if(flag==0) {t++; x=t; letters[t]=block[row][col];}

 index[row][col]=x;

 }

 }

 //..make tape[] array of indices

 t=-1;

 for(col=noc-1;col>-1;col--)

 for(row=0;row<now;row++)

 {t++; tape[t]=index[row][col];}

 //..make array bonk[] of indices to be incremented

 //..and array bonk_pos[] of their locations...

 t=-1; len_bonk=0;

 for(j=0;j<now*noc;j=j+now)

 for(k=0;k<now-1;k++)

 {

 flag=0;

 for(m=0;m<len_bonk;m++)

 if(tape[j+k]==bonk[m]) {flag=1;break;}

 for(m=0;m<j+k;m++)

 if(tape[j+k]==tape[m]) {flag=1;break;}

 if(flag==0 && tape[j+k]!=20)

 {

 bonk[len_bonk]=tape[j+k];

 bonk_pos[len_bonk]=j+k;

 len_bonk++;

 }

 }

 display();

 }

//------------------------end of initialise procedure---------------------

 void display(void)

 {

 for(row=0;row<now;row++)

 {for(col=0;col<noc;col++) cout<<block[row][col]; cout<<endl; }

 cout<<" index[row][col] : "<<endl;

 for(row=0;row<now;row++)

 {for(col=0;col<noc;col++)

 if(index[row][col]<10) cout<<" "<<index[row][col]<<" ";

 else cout<<index[row][col]<<" ";

 cout<<endl; }

 cout<<"Letters: ";for(j=0;j<base;j++) cout<<letters[j]<<" "; cout<<endl;

 cout<<"Indices: ";for(j=0;j<base;j++) if(j<10) cout<<" "<<j<<" ";

 else cout<<j<<" ";

 cout<<endl<<"Nr of cols= "<<noc<<" Nr of rows= "<<now<<endl;

 cout<<"tape: "; for(j=0;j<now*noc;j++) cout<<tape[j]<<" ";cout<<endl;

 // cout<<"action: ";for(j=0;j<now*noc;j++) cout<<action[j]<<" ";cout<<endl;

 cout<<"bonk: "; for(m=0;m<len_bonk;m++) cout<<bonk[m]<<" "; cout<<endl;

 cout<<"bonk_pos: "; for (m=0;m<len_bonk;m++) cout<<bonk_pos[m]<<" "; cout<<endl;

 cout<<"initialisation done"<<endl<<endl;

 }

